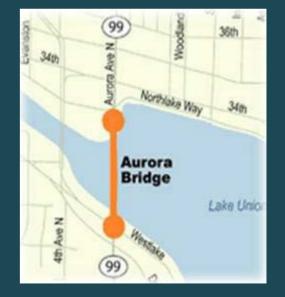
Aurora Avenue Bridge Retrofit Strengthening a Historic Bridge

Michael Lamont, PE SE T.Y. Lin International, Olympia, WA

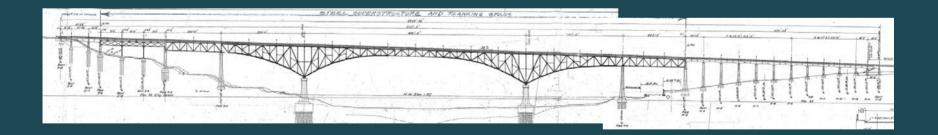

Craig Boone, PE SE WSDOT Bridge & Structures, Olympia, WA

Aurora Avenue Bridge

- Also known as the George Washington Memorial Bridge
- Spans Lake Washington ship canal at the entrance to Lake Union
- Designed and built between 1929 and 1931

Aurora Avenue Bridge

- Located on a critical emergency route
- Currently listed in the National Register of Historic Places
- Distinctive Architectural Features
 - Cruciform columns, Haunched Girders



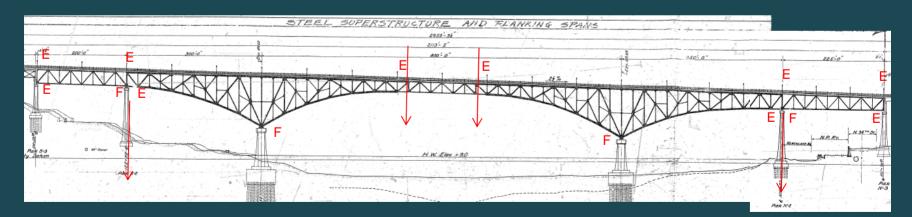
Aurora Avenue Bridge

- Total bridge length = 2,955 ft
- 3 Units:
 - South Approach (6 concrete girder and steel truss spans) = 380 ft
 - Main Unit (5 steel deck truss spans) = 1881 ft
 - North Approach (12 concrete girder spans) = 694 ft

Aurora Avenue Bridge – Retrofit Phases

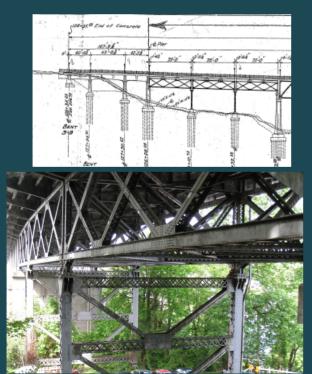
• Retrofit broken up into stages:

- Stage 1 & 2: Main Unit
- Stage 3: North and South Approaches

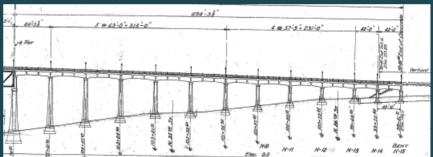


Aurora Avenue Bridge

• Main Unit


- Statical System anchor piers, cantilever trusses, and suspended span
- Tapered cruciform concrete columns, lightly reinforced (#4 @18")
- Expansion joints at Piers N3, N2, S2, S3, and ends of suspended span

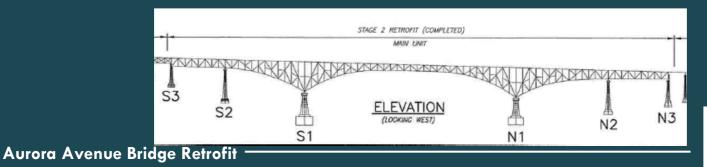
Aurora Avenue Bridge


- South Approach
 - Reinforced concrete spans with split cruciform columns
 - 75' truss spans, steel bents pinned top & bottom

Aurora Avenue Bridge Retrofit

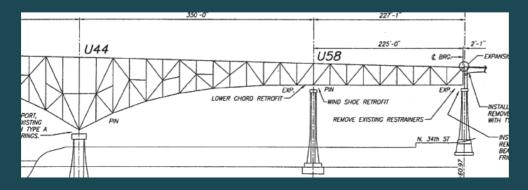
• North Approach

- Varying height piers, cruciform columns (#3@12")
- Continuous frames separated by split columns

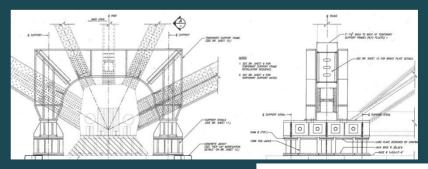


Aurora Avenue Bridge – Main Unit

- ADINA Time History Analysis
- 475-yr Return Period EQ, a = 0.32 g
- Vulnerabilities Identified Main Unit:
 - Lateral Capacity of Bearings
 - Shear and Flexural Capacity of Columns
 - Deficient Truss Members

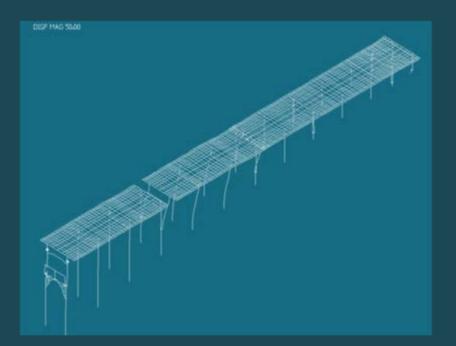

Aurora Avenue Bridge – Main Unit Retrofit

- Friction Pendulum Bearings at N1/S1 & N3/S3
 - Reduced shear demand on columns
 - Reduced truss demands
- Shock Transmission Units at N2/S2
 - FP Bearings not feasible at uplift piers
 - Restraint of Expansion at anchor Piers
 - Redistribution of Forces between Piers



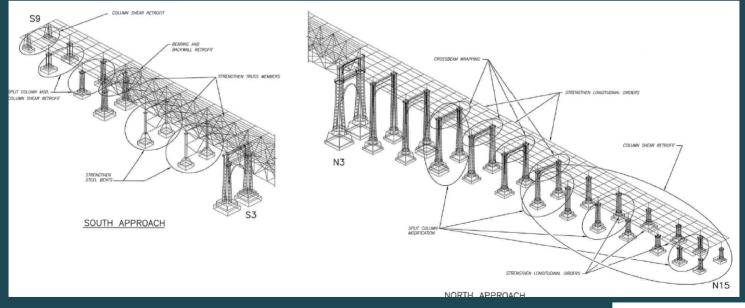
Aurora Avenue Bridge – Main Unit Retrofit

- Installation of N1/S1 Friction Pendulum Bearings
- STU's installed
- Expansion Joint Modification for free displacement
- Completed 2005

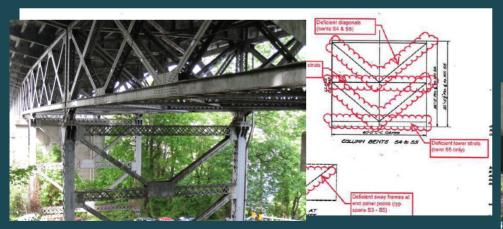


Aurora Avenue Bridge – Approach Retrofit – Vulnerability Study

- ADINA Time History Analysis
- ADINA Pushover for Verification
- 475-yr Return Period EQ, a = 0.32 g



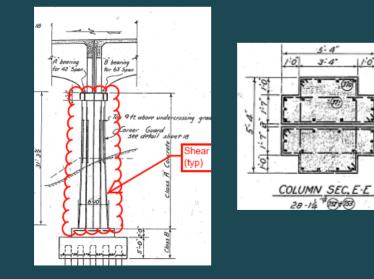
Aurora Avenue Bridge – Approach Retrofit – Vulnerability Study

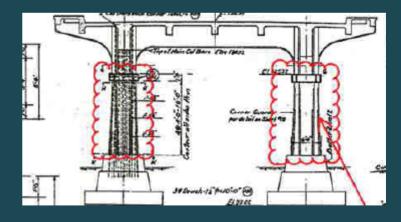

- Cruciform columns deficient in shear
- Split columns deficient in bending /shear
- Intergral end bents / abutments strengthening req'd

Aurora Avenue Bridge – Approach Retrofit – Vulnerability Study (cont.)

- Concrete girders deficient in bending
- Steel truss spans lateral wind bracing insufficient for seismic demands
- Steel truss bents lateral bracing (struts and diagonals) insufficient for seismic demands

Aurora Avenue Bridge – Approach Retrofit Considerations

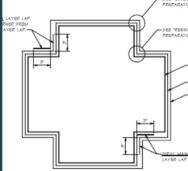

- Historical Structure look of the columns can't change
- Statical System split columns provide for thermal movements

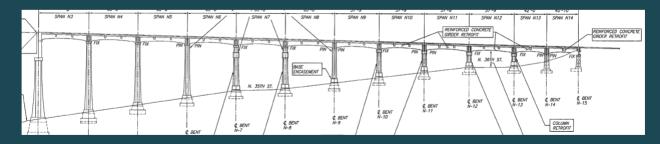


epartment of Transportation

Aurora Avenue Bridge – Vulnerability Study Recommendations

- Retrofit cruciform columns using FRP (for shear).
- Modify cruciform split columns to eliminate split joints.
- Strengthen longitudinal concrete girders for moment using FRP or concrete jackets.
- Strengthen 75' truss span elements and S-4 and S-5 secondary elements.

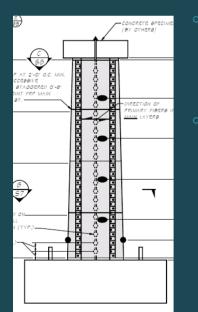




Aurora Avenue Bridge – Approach Retrofit Next Steps

• Testing program to verify effectiveness of FRP shear retrofit on cruciform columns

 Verify service and seismic performance of concrete frames with modified statical system (eliminated splits)


Aurora Avenue Bridge – Column Testing Overview

- Washington State University
- Dr. David I. McLean, Brian J. Walkenhauer
- Goal: Verify the effectiveness of FRP wrapping for improving shear performance in cruciform columns
 - Solid columns
 - re-entrant corner anchorage
 - hinge confinement
 - Split columns
 - Shear transfer @ split column interface

Aurora Avenue Bridge – Column Testing 7 specimens – 5 solid columns, 2 split columns – 1/3 scale

Col. 3

FRP jacket, steel

angle with bolts, no

hinge confinement

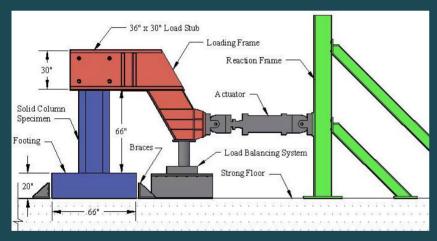
<u>Col. 1/5</u>

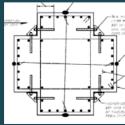
As-built column (no FRP) – 2 specimens

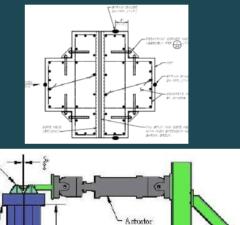
• Split Columns (6 & 7):

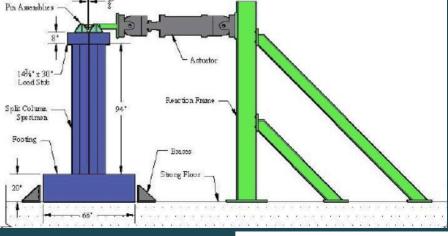
FRP jacket, FRP anchors, cored/grouted split, confinement collar – 2 specimens

FRP jacket, FRP anchors, hinge confinement collars

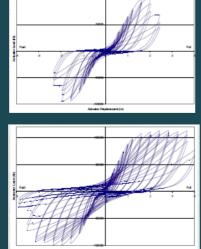





Aurora Avenue Bridge – Column Testing Setup


• Solid columns loaded in double bending (fix-fix)

• Split columns loaded in single bending (fix-pin)

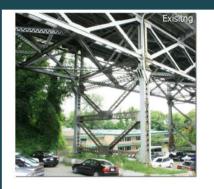


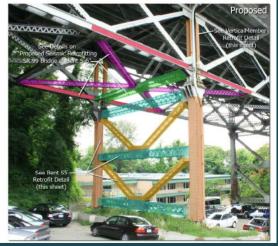
Aurora Avenue Bridge – Column Testing Results

- As-built solid columns shear failure w/ modest ductility (µ = 4.8)
- Column 2 shear failure w/ slightly improved ductility
- Column 3 flexural failure & hinge degradation w/ improved displacement capacity
- Column 4 flexural failure w/ ductile response (µ = 6.8)
- Split columns able to transfer shear across split with shear keys only (no reinforcement required)

Column	V _y (kips)	Δ _y (in.)	K _y (k/in.)	V _{max} (kips)	∆ _{max} (in.)	μ_{Δ}	Drift (%)	E _{total} (k-in.)
1	27	0.54	60	98	2.8	4.8	3.8	290
2	49	0.53	91	101	2.8	5.3	4.3	400
3	50	0.62	81	105	3.2	5.2	4.9	490
4	56	0.59	94	113	4.0	6.8	6.1	650
5	49	0.54	90	103	2.4	3.0	3.3	300
6	36	1.42	25	47	6.0	4.2	5.6	110
7	28	1.32	21	50	6.0	4.6	5.6	120

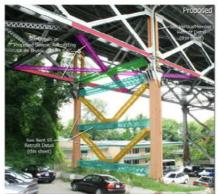
Aurora Avenue Bridge – Column Testing Conclusions

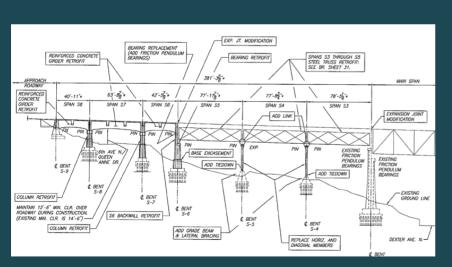

- FRP, properly anchored, is effective at enhancing shear strength to achieve ductile response
- FRP alone does not provide adequate hinge confinement for cruciform shape
- FRP anchors or steel angle are effective at anchoring re-entrant corner
 - FRP easier to install and do not alter appearance of column
- Steel collar filled with grout is effective at confining hinge regions
- Cored holes with grout detail is effective at transferring split column interface shear

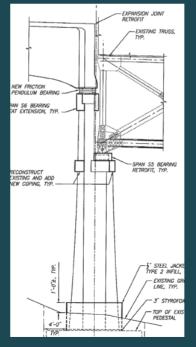


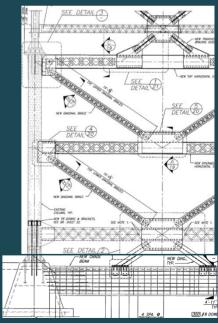
Aurora Avenue Bridge – Approaches – Retrofit Design Overview

- South Approach concrete spans
- South Approach truss spans
- North Approach

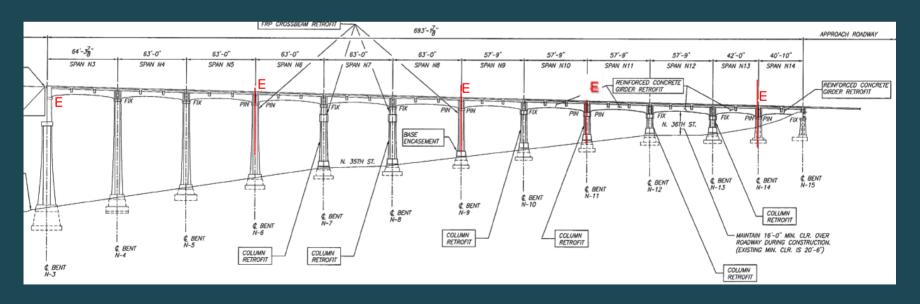






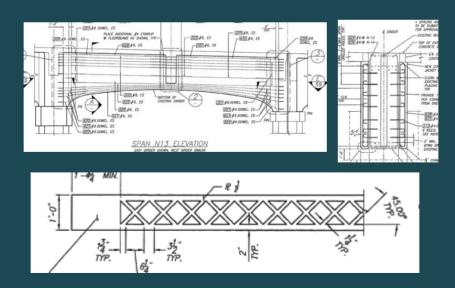

Aurora Avenue Bridge – Approaches – Design phase developments

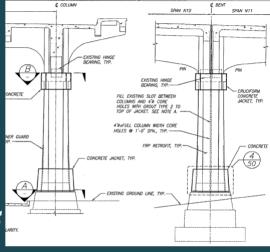
- South approach
 - Added Friction Pendulum Bearing at S6
 - Eliminated costly abutment S9 retrofit, shear retrofit at S6, longit moment retrofit at S6 backwall
 - Added grade beam and tiedowns at steel bents
 - Transverse shear transferred away from pin joints, avoids complete bent replacement

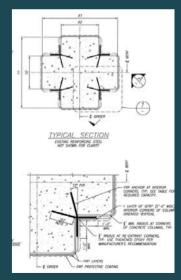


NINTERNATIONAL Aurora Avenue Bridge – Approaches – Design phase developments


- North approach
 - Split columns N6, N9, and N14 left open
 - Improved longitudinal force distribution and service behavior
 - Elimination of costly abutment N15 retrofit
 - Reduced girder retrofit extent to span N10-N14 only






Aurora Avenue Bridge – Approaches – Design Details

- FRP Column Strengthening
- Girder Strengthening
- Split Column Modification
- Steel Bent Retrofit aesthetic treatments
- Steel Truss Retrofit aesthetic treatments

Aurora Avenue Bridge – Approaches

• Questions?

